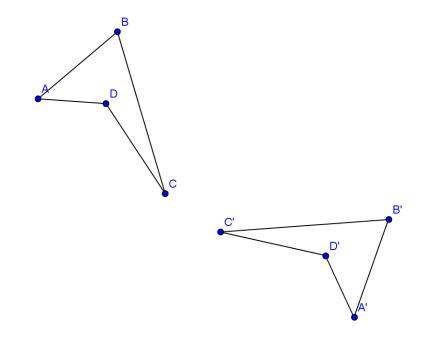

 \triangle ABC is reflected across DE and maps onto \triangle A'B'C'.

Use your compass and straightedge to construct the perpendicular bisector of each of the segments connecting A to A', B to B', and C to C'. What do you notice about these perpendicular bisectors?

Label the point at which $\overline{AA'}$ intersects *DE* as point *O*.

a. What is true about A0 and A'0?

b. How do you know this is true?



Mini Lesson

Example 1:

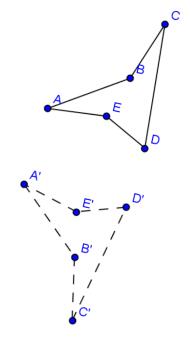
Construct the segment that represents the line of reflection for quadrilateral ABCD and its image A'B'C'D'.

What is true about each point on ABCD and its corresponding point on A'B'C'D'?

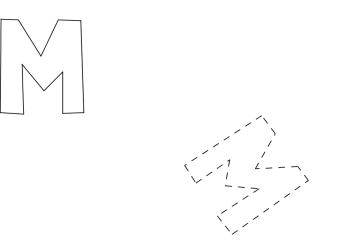
Definition:

Reflection: For a line l in the plane, a *reflection across* l is the transformation r_l of the plane defined as follows:

- 1. For any point P on the line l, $r_l(P) = P$, and
- 2. For any point P not on l, $r_l(P)$ is the point Q so that l is the perpendicular bisector of the segment PQ.



Work Time:


Examples 1-2

Construct the line of reflection across which each image below was reflected.

1.

2.

Name

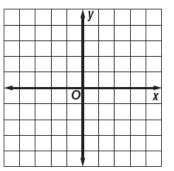
Lesson 15: Rigid Motions - Reflections

1. The diagram consists of nine congruent rectangles. Under a translation, the image of A is G. Find the image of each of the given points under the same translation.

a. J **b.** *B* **d.** *F* e. E c. I

Graph each figure and its image after the specified rotation about the origin.

3. $\triangle STU$ has vertices S(2, -1), T(5, 1) and $U(3, 3); 90^{\circ}$

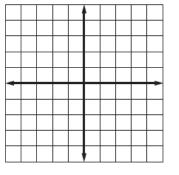

- 5. quadri W(-1,Z(-4,

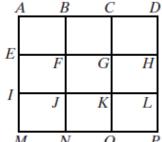
ilateral WXYZ has vertices	
(, 8), X(0, 4), Y(-2, 1) and	
3); 180°	
•	

	-	y		
	0			x

4. $\triangle DEF$ has vertices D(-4, 3), E(1, 2), and $F(-3, -3); 180^{\circ}$

6. trapezoid *ABCD* has vertices A(9, 0), $B(6, -7), C(3, -7) \text{ and } D(0, 0); 270^{\circ}$


A	В	C	L
E			
	F	G	Η
1	J	K	L
M	N	0	P


GEOMETRY

111

Classwork/Homework

Lesson 15

